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Evolutionary game theory describes systems where individual
success is based on the interaction with others. We consider a
system in which players unconditionally imitate more successful
strategies but sometimes also explore the available strategies at
random. Most research has focused on how strategies spread via
genetic reproduction or cultural imitation, but random exploration
of the available set of strategies has received less attention so far.
In genetic settings, the latter corresponds to mutations in the DNA,
whereas in cultural evolution, it describes individuals experiment-
ing with new behaviors. Genetic mutations typically occur with
very small probabilities, but random exploration of available
strategies in behavioral experiments is common. We term this
phenomenon ‘‘exploration dynamics’’ to contrast it with the tra-
ditional focus on imitation. As an illustrative example of the
emerging evolutionary dynamics, we consider a public goods game
with cooperators and defectors and add punishers and the option
to abstain from the enterprise in further scenarios. For small
mutation rates, cooperation (and punishment) is possible only if
interactions are voluntary, whereas moderate mutation rates can
lead to high levels of cooperation even in compulsory public goods
games. This phenomenon is investigated through numerical sim-
ulations and analytical approximations.

cooperation � costly punishment � finite populations � mutation rates

Evolutionary game dynamics describes how successful strate-
gies spread in a population (1, 2). Individuals receive a payoff

from interactions with others. Those strategies that obtain the
highest payoffs have the largest potential to spread in the
population, either by genetic reproduction or by cultural imita-
tion. For example, from time to time, a random focal individual
could compare its payoff with another, randomly chosen role
model. The role model serves as a benchmark for the focal
individual’s own strategy. Depending on the payoff comparison,
the focal individual either sticks to its old strategy or it imitates
the role model’s strategy. We focus here on the simplest choice
for a payoff comparison, which is the following imitation dy-
namics (3): If the role model has a higher payoff, the focal
individual switches to the role model’s strategy. If the role model
has a lower payoff, the focal individual sticks to its own strategy.
If both payoffs are identical, it chooses between the 2 strategies
at random. The imitation dynamics can be obtained from other
dynamics with probabilistic strategy adoption in the limit of
strong selection (4). When only 2 strategies are present, the
dynamics becomes deterministic in following the gradient of
selection. In infinite populations, it leads to deterministic dy-
namics closely related to the classical replicator equation (5, 6).
In both cases, the dynamics remains stochastic if the payoff
differences vanish. For large populations and in the absence of
mutations, the replicator dynamics is a useful framework to
explore the general dynamics of the system. However, because it
does not include any stochastic terms, it is not necessarily a good
approach to describe the dynamics in behavioral experiments. In
finite populations, the system is affected by noise, which can
trigger qualitative changes in the dynamics.

Although imitation dynamics are a common way to model
evolutionary game dynamics, they do not include the possibility

to explore the available strategies. Thus, we allow for random
exploration (or mutations) in addition to the imitation dynamics.
In our model, mutations occur with probability � in each update
step. In genetic settings, mutations change the strategy encoded
in the genome. In such a setting, the mutation probabilities � are
expected to be small. In contrast, according to behavioral
experiments (8, 9), the willingness of humans to explore strategic
options implies much higher mutation rates. In such settings,
people not only imitate others but also act emotionally, attempt
to outwit others by anticipating their actions, or just explore their
strategic options (7–9). As a first approximation for a system with
few strategies, we subsume the occurrence of such behavior by
a large exploration rate, which leads to the continuous presence
of all strategic types. For example, in compulsory public goods
games without punishment, � 20% of the players cooperate (M.
Milinski, personal communication), even though defection is
dominant. Therefore, it seems reasonable to consider mutation
rates even greater than 10%.

Thus, 2 limiting cases can be considered: Either random
exploration represents a small disturbance to a pure imitation
process (� �� 1) or imitation is a weak force affecting a purely
random choice process (1 � � �� 1). This second limit is a simple
way to incorporate effects that cannot be captured by imitation.
For both cases, we present analytical approximations.

To make our analysis more concrete, we focus on the evolution
of cooperation, which is a fascinating problem across disciplines
such as anthropology, economics, evolutionary biology, and
social sciences (10, 11). In public goods games among N players,
cooperation sustains a public resource. Contributing coopera-
tors pay a cost c to invest in a common good (12, 13). All
contributions are summed up, multiplied by a factor r (1 � r �
N) and distributed among all participants, irrespective of
whether they contributed or not. Because only a fraction r/N �
1 of the focal individual’s own investment is recovered by the
investor, it is best to defect and not to contribute. This generates
a social dilemma (14): Individuals that ‘‘free ride’’ on the
contributions of others and do not invest perform best. Such
behavior spreads, and no one invests anymore. Consequently,
the entire group suffers, because everyone is left with zero payoff
instead of c(r � 1) (15). This outcome changes if individuals can
identify and punish defectors. Punishment is costly and means
that one individual imposes a fine on a defecting coplayer (7,
16–21). The establishment of such costly behavior is not trivial
(22, 23): A single punishing cooperator performs poorly in a
population of defectors. Moreover, punishment is not stable
unless there are sanctions also on those who cooperate but do not
punish. Otherwise, such ‘‘second-order free riders’’ can under-
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mine a population of punishers and pave the way for the return
of defectors. Recently, Fowler (24) has proposed that punish-
ment is easily established if the game is based on voluntary
participation rather than compulsory interactions. However, for
infinite populations and vanishing mutation rates, the dynamics
of the resulting deterministic replicator equations are bistable as
well as structurally unstable (25). Nevertheless, Fowler’s intu-
ition is confirmed for finite populations and small mutation rates
(22). In this case, the initial conditions determine the outcome
of the process.

Methods
Here, we focus on the effect of random exploration and dem-
onstrate that the mutation rate can trigger qualitative changes in
the evolutionary dynamics (26–30). To illustrate how increasing
mutation probabilities affect the evolutionary dynamics, we
address the evolution of cooperation and punishment in N-
player public goods games in finite populations. A group of N
individuals is chosen at random from a finite population of M
individuals. If interactions are not mandatory, individuals can
choose whether they participate in the public goods game (as
cooperators C or defectors D) or refuse to interact (14, 31, 32).
The public goods game represents a risky but potentially worth-
while enterprise. If it fails, nonparticipating loners (L) relying on
a fixed income � are better off. However, if it succeeds,
participation is profitable. Thus, the loner payoff � is larger than
the payoff in a group of defectors but smaller than in a group of
cooperators, 0 � � � (r�1)c. Loners affect the average number
of participants S (S � N). Whenever only a single cooperator or
defector joins the game (S � 1), he acts as a loner. The
introduction of loners generates a cyclic dominance of strategies:
If cooperators abound, defection spreads. If defectors prevail it
is better to abstain and the average S decreases. For S � r
investments in the public good yield a positive return, and hence,
cooperators thrive again. However, the increase of cooperators
also increases S and thus reestablishes the social dilemma. This
rock–paper–scissors like dynamics has been confirmed in be-
havioral experiments (8). Here, we consider also a fourth
strategic type, the punishers (P) who cooperate and invest but,
in addition, punish the defectors (22, 25). Punishing a defector
costs � and reduces the defector payoff by � � �. We consider
a generic choice of parameters leading to nontrivial dynamics:
Punishment is less costly to the punisher than to the punished
player, � � �. Furthermore, r � N, such that defection dominates
cooperation. In addition, our analysis makes the weak assump-
tion that a population of only punishers and defectors is bistable,
i.e., punishers cannot invade a defector population, and defec-
tors cannot invade a punisher population. This is a weak
requirement, because otherwise punishment is either trivial (for
vanishing costs, P dominates D) or impossible (if the costs exceed
the fines, D dominates P), see supporting information (SI)
Appendix.

Our analytical approach works as follows: First, we calculate
the payoffs of each strategy in one particular interaction with iC
cooperators, iD defectors, iL loners, and iP punishers. Next, we
compute the probability that an interaction group has a certain
composition, i.e., that it includes a particular number of each
type. This determines the average payoffs of the 4 strategies, �C,
�D, �L, and �P, which depend on the composition of the
population X � (XC, XD, XL, XP). Details of these calculations can
be found in the SI Appendix. The average payoffs form the basis
of the evolutionary dynamics, because they determine the prob-
ability, Tj3k(X), to choose a type j individual and transform it into
type k. The dynamics of the system in infinite populations has
been discussed before in detail (25, 31, 32). It turns out that if
all 4 strategies are available, the dynamics is bistable as well as
structurally unstable. The system either converges to cycles of
cooperators, defectors and loners, such that no punishers are

present, or to a neutral mixture of cooperators and punishers,
such that no loners and defectors are present (25). Thus, we focus
on finite populations and consider 2 different analytical ap-
proaches: (i) For small mutation rates, a mutant goes extinct or
takes over the population before the next mutation occurs. In
this case, the dynamics can be described by an embedded Markov
chain based on the transitions between pure states, where all
players use the same strategy. (ii) For large mutation rates, the
Master equation determining the evolutionary dynamics of the
system can be approximated by a Fokker–Planck equation, which
governs the stationary distribution.

For the technical details of these 2 analytical approaches, we
refer to the SI Appendix. Here, we concentrate on the qualitative
features of the resulting dynamics.

Results and Discussion
First, we turn to the evolutionary dynamics of finite populations
for small mutation rates, �M2 �� 1 (22, 33). In this case, the time
scales of mutation and imitation are separated. The system is
homogeneous most of the time, i.e., all individuals use the same
strategy, and only occasionally a mutation occurs. The mutant
will either reach fixation or extinction before the next mutant
arises. Thus, we can restrict our analysis to a pairwise comparison
of pure strategies, where all individuals use the same strategy.
The full Markov chain of the system on a large state space can
be approximated by an embedded Markov chain between the
pure states. Interestingly, for imitation dynamics the transition
probabilities—and thus the fixation probabilities—are com-
pletely independent of the interaction parameters (see SI Ap-
pendix). For imitation dynamics, this is a generic result for any
game unless a stable coexistence of at least 2 strategies exist. In
our case, stable fixed points on the edges appear only for
parameters violating our ‘‘generic’’ assumptions. In contrast to
many other types of selection dynamics with weaker selection
(22), only the population size M enters in the transition proba-
bilities. Thus, the stationary distribution only depends on the
population size (see SI Appendix).

In the standard public goods game, defectors naturally dom-
inate cooperators: A defector can take over a cooperator
population, but a cooperator cannot invade a defector popula-
tion.

In public goods games in which cooperators have the option
to punish defectors, the resulting dynamics can be characterized
as follows: In the state with punishers only, no deviant strategy
obtains a higher payoff. However, the situation is not stable, see
Fig. 1A: Cooperators obtain the same payoff and can thus invade
and replace punishers through neutral drift. Once cooperators
have taken over the whole population, defectors are advanta-
geous and take over. Thus, this evolutionary end state is
observed regardless of the availability of the punishment option,
see Fig. 2 A and B: For � 3 0, defectors prevail.

In voluntary public goods games without punishment, there is
cyclic dominance. In finite populations, it manifests itself as
follows: When defectors dominate, taking part in the game does
not pay, and the loners that do not participate have the highest
payoff. When there are no participants, a single cooperator does
not have an advantage (because there is no one to play with).
However, as soon as the second cooperator arises by neutral drift
(which happens with probability 1

2
), cooperators take over, and

the cycle starts again. Thus, in the long run, the system will spend
50% of the time in the loner state and 25% in the cooperator and
defector states, respectively (see SI Appendix).

If we combine all 4 options, the loner option provides an
escape hatch out of mutual defection: As soon as loners take
over, they pave the way for the recurrent establishment of
cooperation, either with or without punishment (22): In the
vicinity of the loner state L, the dynamics is neutral as long as,
at most, a single participant is present (S � 1). A second
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participant arises by neutral drift with probability 1
2
. Both coop-

erators and punishers are advantageous as soon as S � 2 and
ultimately take over. If cooperation without punishment is
established, defectors are advantageous and can invade. How-
ever, if punishers take over, it may take a long time before
nonpunishing cooperators take over via neutral drift, because,

on average, M invasion attempts are necessary before fixation
occurs. A detailed analysis of the transition matrix of the system
shows that the system is in state C, D, or L with probability p �
2/(8 � M), see SI Appendix. With the remaining probability 1 �
3p � (2 � M)/(8 � M), the system is in state P. Because
limM3�p � 0, punishers prevail for large M. Even though the
system spends vanishingly little time in the loner state, they are
pivotal to tip the scale in favor of cooperation (and punishment),
see Fig. 2 (22).

The small mutation rates are fully justified under genetic
reproduction, but this approximation seems to be less appropri-
ate to model cultural evolution or social learning. For high

A
Punishers

Cooperators Defectors

μ=0.0

B
Punishers

Cooperators Defectors

μ=0.18

C
Punishers

Cooperators Defectors

μ=0.5

Fig. 1. Dynamics of the system with cooperators, defectors and punishers in
the simplex S3 for different mutation rates. The arrows show the drift term
Ak(x) of the Fokker–Planck equation, white circles are stable fixed points in the
limit M 3 �. The discontinuities are a consequence of the strong selection.
Blue corresponds to fast dynamics and red to slow dynamics close to the fixed
points of the system. The system does typically not access the gray shaded area,
because the minimum average fraction of each type because of mutations is
�/3. (A) For vanishing mutation probability (�3 0), there is only 1 stable fixed
point in the defector corner. (B) For � � 0.2, there are 2 stable fixed points, one
close to the cooperator corner and one close to the defector corner. The
population noise can drive the system from the vicinity of one of these points
to the other, which makes an analytical description of the dynamics difficult.
(C) For � � 0.5, there is only a single stable fixed point, which is closest to the
cooperator corner—thus, cooperators prevail for high mutation rates. We use
the position of this fixed point as an estimate for the average abundance of
the strategies, see Fig. 2 [parameters: M � 100, N � 5, r � 3, c � 1; � � 1, � �
0.3; � � 1, graphical output based on the Dynamo software (37)].
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Fig. 2. Imitation dynamics for different mutation rates. Symbols indicate
results from individual-based simulations (averages over 109 imitation steps),
and solid lines show the numerical solution of the Fokker–Planck-equation,
corresponding to a vanishing drift term Ak(x), see SI Appendix. Because a
fraction � of the population always mutates, the minimum fraction of each
type is �/d (for d strategies) and the gray shaded areas are inaccessible to the
process. Although previous approaches have focused on small mutation rates,
large mutation rates change the outcome significantly. (A) In compulsory
public goods interactions, defectors dominate cooperators for all mutation
rates. (B) In compulsory public goods interactions with punishment, defectors
only dominate for small �. For high mutation (or exploration) rates �, coop-
erators dominate, see Fig. 1 for details. Despite their small abundance, pun-
ishers are pivotal for the large payoff and high abundance of cooperators for
� � 0.2. (C) In voluntary public goods games, cooperators dominate for high
mutation rates as well. Although this effect does not depend on the presence
of loners, these are essential for the success of punishers for small mutations.
The horizontal lines for small �, to which the symbols converge for �3 0, is
the stationary solution of the Markov chain, see SI Appendix (parameters: M �
100, N � 5, r � 3, c � 1; � � 1, � � 0.3; � � 1).
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mutation rates, the previous analytical approximation fails,
because the time scales between imitation and mutation are no
longer separated. For high mutation or exploration probabilities
and large populations, M� �� 1, all strategies are always present
in the population. Thus, mutations generate a fixed background
of all strategic types. Additionally, the dynamics is also affected
by noise arising from the finite population size M. To describe
the system analytically, we can approximate the underlying
master equation of the system by a Fokker–Planck equation. The
drift term captures the deterministic part of the dynamics. The
diffusion term takes stochastic f luctuations into account that
arise from the finite population size M. For � 3 1, there is no
imitation, and the only equilibrium is equal abundance of all
strategies. For smaller �, several stable equilibria may exist, but
the stochastic noise preferentially leads to the equilibrium with
the largest basin of attraction. This approach works best for large
M, because in this case, the noise is too weak for the system to
switch repeatedly between equilibria. In addition, we need large
�, such that only 1 or very few equilibria exist. For M 3 � and
�3 0, this approach essentially recovers the replicator equation
again (34, 35).

The continuous presence of all strategic types for large � is
reflected by a drift away from the boundaries of the simplex, see
Fig. 1. If only cooperators and defectors are present, this leads
to a nonvanishing fraction of the dominated cooperators, see
Fig. 2 A. If also the punishment option is available, large �
implies that defectors are always punished and cannot take over,
whereas punishers suffer from the persistent need to sanction
defectors. Consequentially, cooperators perform best, because
they can rely on the punishers to decrease the payoff of
defectors, see Figs. 1 and 2B. In agreement with behavioral
experiments (36), punishers bear the costs of punishment and do
not win. Nonetheless, the punishment option is often chosen (21,
36). The option to abstain has no qualitative influence for large
� and barely changes the outcome, see Fig. 2C. The pivotal role

of loners to promote cooperation for small � falls to punishers
for large �: Even though the average fraction of punishers is
barely higher than that of defectors, punishers are responsible
for the success of cooperators. Thus, large exploration rates can
lead to a significant increase of cooperation.

To summarize, we have shown that for rare mutations, the
imitation dynamics in a finite population of size M becomes
independent of the parameters r, N, �, �, and �, because the
fixation probabilities depend only on the ranking of payoffs and
not on their detailed values. For rare mutation rates, the average
abundance of the strategy is entirely governed by the fixation
probabilities. Interaction parameters are relevant only when the
mutation rate � increases. Most importantly, however, the
magnitude of � can have crucial effects on the qualitative
features of the dynamics. For low mutation probabilities coop-
eration (and punishment) gets established only in voluntary
public goods interactions. If participation is compulsory, coop-
eration is not feasible at all, even with punishment. In contrast,
high mutation or exploration probabilities lead to the prevalence
of cooperators irrespective of whether individuals have the
option to abstain from the public enterprise. Thus, large explo-
ration rates can lead to a significant increase of cooperation.

In evolutionary game theory, it is common practice to assume
small mutation rates. This is, of course, justified by the small
probabilities of genetic mutations. However, when turning to
imitation dynamics, social learning or cultural evolution, explo-
ration probabilities may be high and may turn into an important
and decisive factor for the evolutionary fate of the system.
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